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The pathophysiology of obesity is extremely complex and is associated with

extensive gene expression changes in tissues throughout the body. This situ-

ation, combined with the fact that all gene expression changes are thought to

have associated epigenetic changes, means that the links between obesity

and epigenetics will undoubtedly be vast. Much progress in identifying epi-

genetic changes induced by (or inducing) obesity has already been made,

with candidate and genome-wide approaches. These discoveries will aid

the clinician through increasing our understanding of the inheritance, devel-

opment and treatment of obesity. However, they are also of great value for

epigenetic researchers, as they have revealed mechanisms of environmental

interactions with epigenetics that can produce or perpetuate a disease state.

Here, we will review the evidence for four mechanisms through which

epigenetics contributes to obesity: as downstream effectors of environmen-

tal signals; through abnormal global epigenetic state driving obesogenic

expression patterns; through facilitating developmental programming and

through transgenerational epigenetic inheritance.
1. Introduction to obesity
Obesity is one of the world’s greatest public health challenges, contributing to

morbidity and mortality through the increased risk for many chronic diseases,

including type 2 diabetes, hypertension, dyslipidemia, coronary artery disease,

stroke, osteoarthritis and certain forms of cancer. Obesity is a multifactorial dis-

order, with key genetic and environmental drivers. Genome-wide association

studies have identified more than 50 loci associated with body mass index,

although the effect sizes are small [1]. Among the environmental factors,

changes in lifestyle, including the increased availability of palatable, energy

dense foods, a reduced need for physical activity and a reduction in sleep are

thought to contribute [2,3]. Food is also rewarding, in much the same way as

drugs of abuse; drug addiction and obesity share neurobiological mechanisms

involving dopamine (DA) [4,5].

Predictions of the World Health Organization suggest that by 2015,

75 per cent of the adult population will be overweight, and 41 per cent obese

[6]. Thus, the relatively recent rise in obesity appears to be related to gene–

environment interactions where our genetic background, coupled with the cur-

rent obesogenic environment, and the rewarding nature of palatable foods,

tends to promote obesity [7]. The other recent changes in the demographic pro-

file in most of the developed world are increased overweight and obesity in

pregnant women, which is now considered to be an ‘endemic’ challenge for

obstetric care [8]. Maternal obesity is associated with childhood obesity, now

considered as epidemic in some areas and on the rise in others [9]. An estimated

22 million children under five are overweight worldwide. The number of over-

weight children in the USA has doubled, and the number of overweight

adolescents has trebled since 1980 [10].

Unravelling the contributors to obesity is complex, given the multiple levels

of gut–brain interaction underpinning appetite and feeding regulation, and the

redundancy in neurotransmitter systems controlling food intake. In humans,

higher centres can override physiological signals, leading to overconsumption.

Overall, the rise in obesity suggests an inadequacy of mechanisms regulating
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Box 1. Epigenetic functions in mammals.

Cell differentiation: multiple cell types can be produced from one genome through the expression of different groups of genes

that regulate cell function and phenotype. Epigenetic modification of genes helps to coordinate the transition of one cell-type

to another through the developmental process of differentiation. Epigenetic modifications also ‘lock-down’ a terminally dif-

ferentiated cell to ensure that all of its daughter cells are the same cell-type. In particular, developmental gene promoters are

regulated by DNA methylation, histone acetylation, and H3K4 and H3K27 methylation.

Dosage compensation: to ensure gene dosage equivalence between male and female mammals, one X-chromosome is inac-

tivated in all somatic cells in females. The silencing is initiated in the early post-implantation embryo when one chromosome

is randomly chosen to be inactivated. The inactive chromosome is epigenetically marked with DNA methylation at gene pro-

moters, transcriptionally repressive histone modifications and the silencing requires the ncRNAs Xist and Tsix. High levels of

H3K27 trimethylation are present on the inactive X-chromosome.

Genome structure maintenance: telomeres and centromeres have unique epigenetic structures that facilitate chromosome

integrity and organization of replication and recombination. Epigenetic modifications also facilitate DNA damage repair.

Genomic/parental imprinting: this is a process whereby the two chromosomal homologues are differently epigenetically

marked (imprinted) depending on which parent they are inherited from. This marking leads to genes being differently

expressed between the two parental homologues. The imprints are set in the germ line, propagated from the gametes to

the adult organism and then erased in primordial germ cells (to be sex-dependently reset in the maturing germ cells to com-

plete the cycle). The molecular regulation of imprinted gene expression varies between imprinted regions but commonly

involves DNA methylation, H3K4, H3K27 and H3K9 methylation.

Repetitive element repression: repetitive elements such as retrotransposons, transposons, short interspersed nucleotide

elements (SINEs), tandem repeats and microsatellites make up more than half of the genome. They are normally covered

with epigenetic modifications that results in a compact DNA/protein structure termed heterochromatin. This compact struc-

ture prevents transcription of mobile repetitive elements or unequal recombination between sequences with similar DNA

sequence that are located in different parts of the genome. Repression of repetitive elements is achieved through

DNA methylation and histone modifications that depend on the class of repeat and the cell-type. For example, in mouse

ES cells, intracisternal A particle (IAP) retrotransposons bear high levels of H4K20 trimethylation, whereas DNA transposons

and pericentric satellite repeats have high levels of H3K9 trimethylation.
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body weight to cope with environments that promote overcon-

sumption of energy, and discourage physical activity. While

much progress has been made in identifying risk loci for

increased body mass index/adiposity, often from a young

age, recent data show that epigenetic modification of genes

by environmental factors may contribute to the development

of obesity, and this issue forms the basis of this review.
2. Introduction to epigenetics
Epigenetics is defined as the study of mitotically and/or

meiotically heritable changes in gene function that cannot

be explained by changes in DNA sequence [11]. Heritability

is what makes epigenetics special, as its role in phenotype

determination lies in-between DNA sequence that is usually

entirely inherited and the more transient activities of tran-

scription factors. Because of this positioning between DNA

and transcription factors, epigenetic mechanisms often func-

tion to perpetuate a phenotype over several cell divisions,

for example in maintaining a cell in a differentiated state

(e.g. making the daughter cells of a muscle cell also muscle

cells) [12,13]. However, an equally important feature of epige-

netic modifications is their ability to be reversed. Owing to

this ability, epigenetic mechanisms are used to control pro-

cesses that are advantageous for the organism when they

are stable for several cell divisions but not indefinitely.

A classic example of this is inactivation of the X-chromosome

in female mammals [14] (box 1). Females silence one copy of

the X-chromosome to have equivalent levels of gene products

as males, who only have one X. The choice of which

X chromosome is silenced in a cell happens during gestation
and that choice is maintained for a lifetime, through millions

of cell divisions. However, the silenced X-chromosome has

to be reactivated between generations so that a female can

produce a healthy male child. This reactivation occurs in

the cells that are the precursors of the gametes in a process

of genome-wide transgenerational epigenetic reprogramming

(see below) [13,15]. Other examples of epigenetic regulation

in mammals that are part of normal development are

described in box 1. Importantly, the reversal of epigenetic

processes that are part of normal development or genome func-

tion is tightly regulated, occurring only at defined time-points

in the life cycle of a mammal. Epigenetic modifications that are

directed by the environment are more plastic than those

described earlier, yet the degree of plasticity is yet to be deter-

mined [11,16]. This is an important question for obesity

research, as it is unclear how completely the epigenetic modi-

fications set by a high-fat diet, for example, can be reversed

through a reduced calorie diet, or exercise. While some genes

that are regulated by normal developmental epigenetic

processes have been implicated in obesity (such as those

that undergo genomic imprinting), environmental–epigenetic

interactions mostly involve other genes.
(a) Types of epigenetic modification
At the molecular level, there are three main types of epige-

netic modification in mammals, DNA methylation, histone

modifications and non-coding RNA (ncRNA; table 1). DNA

methylation [12] is the covalent attachment of a methyl

group to the base cytosine. The methyl group protrudes

into the major groove of the double helix and can inhibit

the binding of transcription factors. Therefore, DNA



Table 1. Introduction to epigenetic modifications in mammals.

epigenetic
modification modification enzymes effect on genome function

CpG DNA methylation DNA methyltransferases (DNMT) 1, 3a and 3b. Base

excision/DNA repair proteins or simply failure to

remethylate at DNA replication are thought to

facilitate demethylation

presence at promoters associated with gene silencing. Presence

in gene bodies associated with gene activity

non-CpG DNA

methylation

some evidence points to the known DNA

methyltransferases

currently unclear, though its presence at genes is usually

associated with gene activity

histone acetylation several histone acetyl transferases (HATs) and

histone deacetylases (HDACs)

increases protein access to DNA for transcription or genome-

wide reprogramming e.g. sperm protamination

histone methylation several modification-specific histone methyl

transferases and histone demethylases

methylation of some amino acid residues associated with

transcriptional repression, while others with activation

histone variants e.g.

H2A.Z, CENP-A, H2AX

various specialized functions including centromere function, DNA

repair and gene regulation

small non-coding RNAs,

e.g. miRNAs, piRNAs

biogenesis and function requires enzymes such as

RNA polymerase II, DICER and ARGONAUTE

various effects such as transcriptional repression and activation,

translational repression

long non-coding RNAs biogenesis of most found so far involves RNA

polymerase II

known to regulate large-scale transcriptional repression in

genomic imprinting. Recent discovery of abundance

throughout the genome suggests a high variety of functions

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20110337

3

methylation is usually associated with repression of tran-

scription at a locus. DNA methylation in mammals occurs

predominantly at CpG dinucleotides (where p indicates the

phosphate group of DNA that bridges the nucleotides in

the strand). The DNA sequence that base pairs with CpG is

also CpG, and this palindromic situation is used for the

inheritance of DNA methylation between cellular divisions.

During DNA synthesis, maintenance DNA methyltransferase

enzymes ‘read’ the methylated CpG on the template strand

and then add a methyl group to the paired CpG on the nascent

daughter strand. Because of this mechanism, DNA methyl-

ation is considered to be a relatively stable epigenetic

modification with the ability to be faithfully replicated for an

organism’s lifetime, if required. Recent discoveries, however,

have revealed situations where DNA methylation is more

dynamic with replication-independent methylation and

demethylation occurring [17]. As yet, it is unclear whether

transient DNA methylation is a common feature of gene–

environment interactions, including those related to obesity.

Histones are the components of the protein complexes

(nucleosomes) around which DNA is wound. The termini

of histones extend out from the core of the protein like

tails and can be modified by the addition of a variety

of chemical groups such as methylation, acetylation,

phosphorylation and sumoylation [18]. These different modi-

fications can have activating or repressive effects on local

transcription. For example, methylation of lysine 9 on histone

H3 (H3K9met) is associated with transcriptional repression,

whereas H3K4met is associated with transcriptional acti-

vation. In addition, a lysine can have multiple (typically up

to three) methyl groups attached, each with potentially differ-

ent effects on regional function. Acetylation is considered to

be an activating epigenetic mark as the acetyl group facilitates

‘spacing out’ of nucleosomes, thereby allowing easier access
to transcription factors. This expansion or contraction of

protein–DNA complexes is at the heart of epigenetic regu-

lation and extends beyond nucleosomes to higher-order

chromatin structures—for example, heterochromatin proteins

attach to repressive histone modifications, further constricting

the chromatin, hiding the DNA from and creating a barrier to

transcriptionally activating proteins.

A huge variety of ncRNA are transcribed from the

genome, and several classes have been shown to perpetuate

a phenotype in an epigenetic manner [19]. In particular,

they can recruit transcriptional activating or repressing com-

plexes site-specifically through base-complementation. This

highlights the multi-level nature of epigenetic regulation as

ncRNA, DNA methylation enzymes, histone modifiers and

larger-scale chromatin remodellers usually coexist in large

protein complexes where one epigenetic modification stimu-

lates or represses another type. This crosstalk between

different types of modification can reprogramme, or synergis-

tically repress or activate a locus. ncRNA is an exciting new

area of epigenetics [19,20] and its importance for adipogenesis

has been shown [21]. However, the study of its possible invol-

vement in obesity is relatively new; so here we will focus on the

larger body of work from the longer-established areas of DNA

methylation and histone modifications in obesity.

(b) Global epigenetic reprogramming: windows of
environmental sensitivity

The mammalian life cycle has two major epigenetic

reprogramming events. These events are needed to erase epi-

genetic errors (epimutations) that may have arisen through

the lifetime of the parent and to provide the correct epigenetic

patterns throughout the genome to ensure the proper

initiation of embryonic gene expression [13,15].
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The first genome-wide reprogramming event occurs

in the cells which will go on to make the gametes, the pri-

mordial germ cells (PGCs). In mice, these cells start to be

reprogrammed in the developing embryo at about mid-way

through gestation. In females and males the timing of

events differs slightly, reflecting the different end products

of the cell differentiation pathway, oocytes and sperm.

However, PGCs in both germ lines undergo extensive

genome-wide (also known as ‘global’) DNA demethyla-

tion. Normally stable DNA methylation on the silent

X-chromosome and genomic imprints is erased. However,

some classes of retrotransposon and subtelomeric regions

retain methylation [22–24]. The former is presumably due

to retrotransposon transcriptional activation, through the

loss of DNA-methylation-mediated repression, being extre-

mely undesirable for the genome. Retrotransposons insert

into new loci, and recombination occurs between unmethy-

lated repeats from different areas of the genome. The

subtelomeric resistance to demethylation may be due to its

importance for maintaining chromosome end stability [23].

DNA methylation levels return to those of somatic cells a

few days after the demethylation began in males, but not

until after birth in females [25]. Genomic imprints at these

points are set according to the sex of the individual.

A rapid reprogramming of histone modifications

throughout the genome also occurs in PGCs [26]. The histone

reprogramming is more transient than the DNA methylation

erasure probably as a result of the requirement of histone

modifications for coordinating the gene expression pro-

grammes of germ cell development. Another genome-wide

histone reprogramming event occurs in adult males when

nearly all histones are replaced with protamines that can be

more tightly packed, thus enabling the DNA to be condensed

in the sperm [27].

The second genome-wide reprogramming timepoint

occurs immediately after fertilization and continues until

the blastocyst stage. The sperm, upon entry into the oocyte,

is stripped of protamines, which are replaced with histones

from maternal stores, and some repetitive elements in the

sperm DNA are actively demethylated [28]. The chromo-

somes in the oocyte are less methylated, yet during

development to the blastocyst, a further reduction in methyl-

ation occurs on both sets of chromosomes, presumably

through exclusion of DNA methylation enzymes from the

nucleus. The demethylation process in the preimplantation

embryo is less extreme than in the germ line, as some types

of retrotransposon and genomic imprints are not demethy-

lated [29], and a recent study has also detected significant

levels of global methylation throughout the preimplantation

period [30]. The reprogramming events involving histone

modifications are more complex than DNA methylation. It

appears that apart from the extensive deprotamination and

histone-replacement across the sperm DNA, most chromatin

changes reflect gene regulatory changes that coordinate this

highly dynamic period of development [31].

These two reprogramming events are the times of the life

cycle that have the most extensive changes to epigenetic state.

The epigenetic state that is set at the end of either of the events,

at some loci, persists for the lifetime of that individual. Therefore,

any epigenetic modifications that are triggered by unusual envi-

ronmental conditions, or are just plain errors, can affect long-term

phenotype. Furthermore, unlike epigenetic changes in adult

tissues, a change in epigenetic modifications in the gamete or
early embryo can affect the whole body, as all organs stem

from these initial cells [32]. For these reasons, researchers that

are trying to explain the mechanisms of inheritance and individ-

ual risk of developing diseases such as obesity are interested in

the genome-wide reprogramming events.

(c) Cautionary points for those investigating
epigenetics in disease

Firstly, cause and effect of epigenetic modifications are

notoriously hard to distinguish [33]. Researchers should

always keep in mind that the modification may not actually

determine the expression at a locus; it may be the other

way around. Secondly, the importance of DNA sequence in

determining epigenetic state at a locus should not be forgot-

ten. Almost always, the presence or absence of an epigenetic

modification is dependent on an underlying (or even distal)

DNA sequence [34,35]. Finally, an epigenetic change that is

detected in a tissue may sometimes not be due to the repro-

gramming of the locus, but rather could reflect the change

in the relative proportion of cell-types that have differing

epigenetic states [36].

(d) Environment – epigenetic interactions
The recent expansion in examples of epigenetic modifications

being set by environmental triggers has been exciting for epi-

genetics researchers [11,16]. This is because previously most

work in the field focused on epigenetic changes that hap-

pened to all individuals as part of normal development, for

example in Hox clusters and genomic/parental imprinting.

The other large area of epigenetic study at the time, in mam-

mals was disease, predominantly cancer. Environmentally

induced epigenetic change was new in that it linked the epi-

genetic mechanisms to reactive systems that were not always

used. This non-obligatory use of epigenetics also provided a

new mechanism for the development of organismal indivi-

duality. Previously, the only involvement of epigenetics in

phenotype variation was due to the stochastic nature of

some epigenetic processes [16].

Epigenetic research into obesity has illuminated new

molecular mechanisms. These mechanisms facilitate the

environmental triggering of epigenetic state, molecular aetiol-

ogy of disease and disease inheritance. Here, we highlight

four aspects of obesity that have progressed our understanding

of epigenetic mechanisms.
3. Epigenetics as a downstream effector of
environmental signals

At the heart of cellular interactions with the environment,

and the coordination of different cell types in metazoa is the

cell surface receptor. They facilitate the uptake of nutrients,

communication between connected and distally located cells

and ultimately, through signalling cascades, direct an appro-

priate gene expression change to modify the cell’s function.

The gene expression changes are usually associated with epige-

netic modifications at single or multiple loci. All tissues in the

body are at least indirectly affected by obesity through this gen-

eral mechanism as all import nutrients such as glucose and

lipids, and an increase in circulating levels of these, especially

during development, alters cell state. However, obesogenic



corticosteroid
thiazolidinediones
(medication)

signalling
pathways

PPARg

insulin
growth hormone

Igf1

Figure 1. Multiple extracellular signals stimulate adipogenesis through
activation of PPARg, which translocates to the nucleus and directs epigenetic
remodelling of target genes.
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processes such as appetite and reward pathways in the brain,

adipogenesis and fat deposition, inflammation, insulin signal-

ling and glucose and lipid metabolism have unique as well

as overlapping cell receptors [37–39]. For some of these pro-

cesses, the route from external stimulus, through receptor

and signalling pathways to epigenetic changes has been

described (see figure 1). Here, we will give two examples of

how this general mechanism can drive obesity.
(a) Adipogenesis
The cellular differentiation process whereby preadipocytes

become adipocytes (adipogenesis) is a major obesogenic pro-

cess. The mechanisms of this process have been extensively

researched, partly due to its importance in human health

and partly due to the availability of cell culture models

[40]. The pathways that facilitate or inhibit adipogenesis

have both been shown to be epigenetically regulated

(figure 1). In vivo, there are many external signals that bind

cell surface or cytosolic receptors to promote or inhibit adipo-

genesis, including hormones, fatty acids, growth factors,

interferons [40] and the peroxisome proliferator-activated

receptor gamma (PPARg) activating drugs thiazolidinediones

[41]. The differentiation process has multiple stages with a

cascade of sequentially expressed adipogenic transcription

factors interacting with each other and extracellular signals

[42]. Two key transcription factors are PPARg and

Ccaat-enhancer-binding proteins alpha (C/EBPa), which act

together to activate hundreds of genes to produce a mature

adipocyte [43,44]. The H3, lysine 4 methyltransferases

(H3K4MTs) mixed-lineage leukaemia (MLL) proteins MLL3

and MLL4, and their respective complexes have been

shown in several studies to be critical for adipogenesis

through their activation of PPARg and C/EBPa [45–47].

Furthermore, PPARg has been shown to then increase

transcription of the histone H4 Lysine 20 (H4K20) mono-

methyltransferase PR-Set7/Setd8, which then, in a feedback

loop, activates PPARg and the many targets of PPARg to pro-

mote adipogenesis [48]. DNA methylation too appears to be

part of this mechanism, as the PPARg promoter is demethy-

lated during adipogenesis, and adipose tissue from obese

mice was found to have less methylation than normal-

sized mice [49]. The repression of adipogenesis is facilitated

by transcription factors of the Wnt families and b-catenin,

which are themselves silenced in preadipocytes through
the repressive histone mark H3K27 methylation [50].

Deletion of the histone methyltransferase that is responsible

for this mark, Ezh2, derepresses Wnt genes, thus activat-

ing the Wnt/b-catenin signalling, which in turn inhibits

adipogenesis by preventing the transcription of PPARg and

C/EBPa [51].

(b) Neural reward pathways
The appetite and reward pathways in the brain are important

for the development of obesity through their regulation of

food intake. For example, the neurotransmitter dopamine

(DA) is released upon feeding to induce consummatory plea-

sure [52]. Chronic high-fat diet reduces the dopaminergic

pathways in the brain, which means that an individual

needs more stimulation (in the form of feeding) in order to

receive a sufficient feeling of reward, a situation that can

induce obesity [53]. The upstream signal for the dopamin-

ergic pathway reduction is not yet known though evidence

points to the hormone leptin [54,55]. However, more is

known about the downstream epigenetic effects of DA.

Vucetic et al. [53] showed that the decreased reward circuitry

in rats fed with a high-fat diet after weaning involved

DNA-methylation-associated repression at the promoters of

tyrosine hydroxylase (TH), the rate-limiting enzyme in DA

synthesis, and the dopamine transporter (DAT) in the area

of the brain that governs hedonically driven feeding [53].

In another paper, using the same experimental model,

the same group described high-fat-diet-induced changes in

the expression of another gene with importance in the reward

pathways, the transmembrane opioid receptor (mOR). In this

work, they not only correlated increased DNA methylation at

the gene promoter with decreased expression, but also ident-

ified other repressive epigenetic features, namely increased

H3K9 methylation, decreased H3 acetylation and methyl CpG

binding protein 2 (MeCP2), a transcriptional-repressor binding

[56]. The epigenetic complexes that target TH, DAT and mOR

have not been characterized, but considering the variety of epi-

genetic change at the mOR promoter, multiple reprogramming

enzymes will be involved.

In conclusion, changes to epigenetic state at the promoters

of genes is now accepted as a feature of obesity owing to the

extensive examples obtained from research in rodents and

humans cell culture models (reviewed in [11,37–39],

and new experimental data [57–63]). As the activity of

many of those genes is known to be influenced by external

signals, the mechanism of epigenetic changes at disease

genes being caused by upstream signalling pathways is

likely to be important for obesity.
4. Could abnormal global epigenetic state drive
obesogenic expression patterns?

In contrast to the established ‘top down’ mechanisms of a signal

from outside the cell stimulating a disease epigenetic state, we

propose here the possibility for a ‘bottom-up’ mechanism

(figure 2). In this currently unproven model, an individual

has a genotype or dietary deficiency that either alters or ablates

the function of a gene that is involved in epigenetic reprogram-

ming. The faulty function, expression or absence of the modifier

initiates a gene expression program in one or several cell-types

that ultimately induces obesity. As elaborated below, there is



normal situation

(a) (b)

(c) (d)

EM EM

EM

normal situation

mutant epigenetic modifier protein alters normal
epigenetic state

reduced levels of methyl-donors prevents
normal global epigenetic state

epigenetic modifier

epigenetic modification of the genome

gene mutation

methyl-donor

Figure 2. Two hypothetical mechanisms of genome-wide epigenetic change that could increase the risk of obesity. (a) normally an EM is transcribed, translated and
the protein enters the nucleus to regulate genomic epigenetic state (black dots). (b) mutation (or loss) of an EM causes abnormal regulation of one or many genes.
(c) in another scenario, normal levels of methyl-donors (grey triangle) ensure appropriate epigenetic modification of the genome. (d) if the availability of methyl-
donors is reduced, abnormal epigenetic modification of the genome prevents normal gene regulation.
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some evidence for this mechanism from mouse mutants,

human disease and nutritional studies.
(a) Mouse models of epigenetic-modifier-driven obesity
No mice with genetically increased or decreased levels of

DNA methyltransferases have been reported to be obese.

The de novo methyltransferase Dnmt3a (but not Dnmt1 or

Dnmt3b) was found to be more than doubled in white adi-

pose tissue of obese mice [64]. However, importantly, in the

same study, a transgenic mouse that had threefold elevated

Dnmt3a mRNA levels in adipose tissue did not manifest

weight gain or increased adiposity. These data argue against

DNA methyltransferase-driven obesity.

More potential for this mechanism of epigenetically

driven obesity may lie with other modifiers, in particular

those that have more specialized functions and tissue-specific

expression compared with the ubiquitous DNA methyl-

transferases. In mouse, different histone deacetylases are

upregulated in the hypothalamus in response to fasting

(Hdac3 and -4), feeding on a normal diet (Hdhac10

and -11) or a high-fat diet (Hdac5 and -8) [63]. The epigenetic
reprogramming of the genome caused by these proteins may

be extensive, as the changes they caused to histone acety-

lation were detectable with immunohistochemistry. Specific

histone methyltransferases have also been found to be impor-

tant for adipogenesis (see above). Mice with mutations in the

histone H3, lysine 4 methyltransferase (H3K4MT), MLL3

have reduced adipogenesis leading to considerably less

white adipose tissue when fed with a high-fat diet [45].

Also, mice that have loss of function of the H3K9-specific

demethylase JmjC domain-containing histone demethylase

2A (Jhdm2a) have obesity and hyperlipidemia [65,66]. The

histone demethylase activity of Jhdm2a activates key meta-

bolic regulators of the conversion of fat to heat in brown

adipose tissue, and b-oxidation and glycerol release from

skeletal muscle. Finally, mice that are heterozygous for a

mutation in Trim28 (also known as KAP1 or TIF1-b), the

central component of an epigenetic-modifier complex

that directs repressive chromatin state, develop liver steatosis,

adipocyte hypertrophy and impaired glucose tolerance

[67,68]. Therefore, there is precedence for an epigenetic-

modifier mutation being the primary cause of, or protective

against, obesity (figure 2a,b).
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(b) Evidence in humans for obesity associated with
epigenetic-modifier dysfunction

There are few human conditions known to be caused by

mutations in epigenetic-modifier genes. This is likely due to

heterozygosity for mutations usually resulting in a normal

phenotype, and null mutations being embryonic lethal (as

evidenced by mouse models). However, one epigenetic-

modifier disease does have obesity as one of its many down-

stream consequences. Rett syndrome is a developmental

disorder affecting approximately one in 10 000 females [69].

Around 95 per cent of cases have a mutation in MECP2

gene, which encodes a protein that binds throughout the

genome at regions of methylated DNA and complexes with

chromatin remodelling proteins to regulate transcription [70].

Patients with milder forms of Rett syndrome are often obese

[71,72], and mouse models typically get fat when older [73].

This obesity appears to be caused by hypothalamic regulation

of appetite, as a conditional deletion in neurons in the hypo-

thalamus of mice made them anxious, hyperphagic and

obese [73]. The neurotransmitter neuropeptide Y (NPY) was

increased, suggesting that the hyperphagia may be partly

explained by altered hypothalamic feeding regulators.

Linkage analyses of cases of familial obesity, and genome-

wide association studies with body mass index (BMI) in

humans have not uncovered many loci containing epigenetic

modifiers (EMS) [1]. This may indicate the rarity of cases of

epigenetic-modifier-driven obesity, or the extremely polygenic

nature of BMI determinants [74]. The former explanation

would require the rare cases to have large effects on disease

risk [75], which is possible, considering the extensive phenotype

changes caused by MECP2 mutation, and in another epigenetic-

modifier disease, immunodeficiency centromeric instability and

facial anomalies syndrome (ICF syndrome) [76]. It would be

interesting to test this theory by looking for mutations in

known epigenetic-modifier genes in case–control studies.

(c) Evidence for nutrition or chemicals that cause
epigenetic changes to induce obesity in adults

Several chemicals in the form of environmental toxins or

medicines are known to induce obesity [2], and the range

of metabolic processes and genes affected involve alteration

to epigenetic patterns [11,77,78]. Most of these act through

mechanisms such as those described in the first section of

this review—the epigenetic changes are downstream conse-

quences of an environmental trigger. There are a few

examples, however, that primarily alter epigenetic patterns

and these can cause obesity (figure 2c,d).

An example of this is the histone deacetylase valproic

acid, which has been successfully used to treat epilepsy and

bipolar disorder for over 40 years. Apart from the brain, his-

tone acetylation changes occur in a variety of tissues, and one

of the many side effects of the treatment is weight gain and

insulin resistance [79]. The mechanism of valproic-acid-

induced obesity is unclear but thought to be partly due to

a reduction in the expression of adiponectin, a hormone

that regulates energy homeostasis, insulin sensitivity and

mitochondrial biogenesis [80,81]. An alternative possibility

is upregulation of NPY in the central nervous system [82].

Methylation of DNA and histones occurs through the

transfer of a methyl group from S-adenosyl-L-methionine

(SAM). Many dietary factors (such as folate, methionine,
choline, betaine and vitamins B2, B6 and B12) are methyl-

donors that contribute to the production of SAM through

one-carbon metabolism. Dietary decreases in methyl donors

have been shown to have harmful effects, especially in the

development of fatty-liver disease [83,84]. Adult mice that

were fed with a methyl-deficient diet had extensive epige-

netic changes in liver, including reduced global DNA

methylation, reactivation of normally silenced repetitive

elements and altered global levels of histone modifications

(H3K9, H4K20 and H3K27 trimethylation) [84]. It is unclear

whether dietary deficiency of methyl-donors provides a

novel route to obesity, as no mention was made of other

metabolic abnormalities in the mouse model. Fatty-liver dis-

ease is not only a feature of obesity (where it is caused by an

oversupply of lipids or insulin resistance), but is also a feature

of other conditions such as alcoholism or hepatitis. Indeed,

fatty-liver disease associated with global DNA hypomethyla-

tion and global histone changes has been described with rats

exposed to various hepatocarcinogens; so genome-wide epi-

genetic change may be a common reaction in the liver to

environmental stress [85]. Furthermore, the brains of rats

fed with a methyl-donor-deficient diet actually had a slight

increase in global methylation [86]. Nonetheless, the exten-

sive changes to lipid metabolism (including fatty acid

uptake, de novo triglyceride synthesis and fatty acid b-oxi-

dation) caused by methyl-deficiency may promote obesity

[87]. Increased dietary methyl donors in adults can also

alter organism phenotype [88–90]. However, no animal or

human studies have so far reported an induction of obesity

from the treatment of adults. In fact, methyl-supplementation

may even be protective against obesity [91]. Indeed, the best

evidence for methyl-donor availability inducing obesity

comes from the developmental programming field (see below).

In conclusion, current evidence supports the feasibility of

the mechanism of epigenetic-modifiers-driven obesity, though

not it being a common driver of obesity. Further, animal

models with tissue-specific under/overexpression of EMs are

needed to resolve this. Also, studies where epigenetic-modifier

mutants are exposed to a high-fat diet would be informative.
5. Developmental programming of adult obesity
The greatest area of research on the involvement of epigenetic

mechanisms in obesity is on the developmental origins of

adult health and disease (DOHaD), otherwise known as gesta-

tional/foetal/developmental programming. This is when an

early-life experience of an organism increases its risk of develop-

ing disease as an adult. The types of early-life experience that

have been shown to cause this include changes to nutrition

(excess and starvation), chemical exposures and stress [92–94].

The resulting diseases are often metabolic although some-

times cancer, behavioural or reproductive disease. There are

two reasons why epigenetic processes are important for

developmental programming. Firstly, epigenetic modifications,

through their stability over cell divisions, serve to maintain the

molecular effects of an early-life experience until adulthood

[11]. Secondly, the large-scale epigenetic changes that naturally

occur throughout development create ‘windows of opportunity’

for environmental modulation of epigenetic state [16]. This con-

trasts with the relative stability of epigenetic state in the adult.

Early-life exposures to stress [95], under or overnutrition

during gestation or lactation [7,96] and chemicals such as
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endocrine disruptors [78] have all been associated with

increased risk of obesity in adulthood.

Obesity is part of a range of programmed disorders that are

collectively known as ‘metabolic syndrome’, the others being

hyperglycaemia, insulin resistance, hyperlipidemia, hyperin-

sulinemia and hypertension. The cause of the syndrome is

thought to be due to a mismatch in the environment experi-

enced by the organism during development compared with

later life [97,98]. For example, if an organism experiences

reduced nutrients during development, it can be ‘program-

med’ to anticipate the same environment in later life. This

would involve hyperphagia, increased fat storage and a prefer-

ence for a high-fat diet. Such programming may have been

advantageous in ancient human populations, as these ‘predic-

tive adaptive responses’ [99] would increase the chances of the

individual surviving in a resource-limited environment. How-

ever, if an individual is programmed in this way owing to an

abnormal shortage of food (such as famine) or exposure to a

chemical that mimics the famine programming, signals con-

tinue in a time of abundant food supply, and the mismatch

could lead to obesity. As well as altered systemic metabolism,

affecting glucose and lipid homeostasis, the programming of

appetite and reward pathways in the brain [7], adipogenesis

[100–102] and inflammation [103] are thought to be important

programmed processes relevant to adult obesity.

DNA methylation or histone modification changes associ-

ated with the developmental programming of obesity are

numerous and have been extensively reviewed recently

[37,38,104]. For example, epigenetic changes have been

detected at genes that regulate growth factors [105], adipo-

genesis [106], brain appetite and reward pathways [107,108]

and glucose homeostasis [58,109]. The precise mechanisms

of developmental programming are not understood but are

expected to be varied, as several initial triggers of program-

ming are known. Programmed epigenetic changes that are

triggered by hormones, endocrine disruptors, circulating

levels of different nutrients or social stress will likely be

downstream consequences of environmental signals (figure 1).

Alternatively, some evidence also supports alteration of epige-

netic state during development as the underlying cause adult

phenotype (figure 2). Methyl-donor deficiency or supplemen-

tation during gestation can cause DNA methylation changes

that persist throughout the life of the offspring. Deficiency

during gestation can cause genome-wide hypomethylation

[110], while in utero supplementation has been shown to alter

the methylation of specific genes [111,112].

The presumed large variety of programming mechanisms is

also related to the timepoint of the environmental exposure, as

different developmental processes occur at different times.

Epigenetic abnormalities can be caused by extremely early

developmental changes or postnatal ones. For example, many

studies have shown epigenetic changes in offspring that are

generated with assisted reproductive technologies where

the preimplantation embryo was exposed only briefly to an

unnatural environment [113]. Nutritional alterations in the peri-

conceptional period also in natural matings can have effects

on offspring obesity, with associated epigenetic changes [114].

Conversely, exposure to only high fat during lactation can pro-

gramme offspring adiposity and neural stress responses [115].

Therefore, it seems that there are different windows of opportu-

nity for the programming of epigenetically labile genes [16].

Importantly, there is now evidence for developmental pro-

gramming to affect multiple generations. This is based on
human epidemiological studies where nutritional availability

in the grandparental (F0) generation has been shown to be associ-

ated with cardiovascular and metabolic health of the third

generation (F2) [116–118]. These and other observations have

created the possibility that, as obese mothers are more likely to

have obese children, human populations may be facing an inter-

generational cycle of obesity [114,119]. Mouse models have

attempted to test this and have confirmed transgeneratio-

nal amplification of obesity and hepatic steatosis [91,120].

Interestingly, however, a diet enriched in methyl-donors pre-

vented the transgenerational amplification of obesity, which

may suggest that epigenetic mechanisms could play a role not

only in the inheritance, but also in the treatment of the cycle.

As well as transgenerational effects owing to maternal

health, our group showed that the offspring of obese male

rats had impaired insulin secretion and glucose tolerance

[121]. Another group also reported altered lipid metabolism

in the livers of offspring from fathers fed with a low protein

diet [122]. As, in these cases, the father only contributed to

the offspring at conception, an epigenetic factor in the

sperm seems the likely mechanism [123].

As well as continuing to characterize the mechanisms of

DOHaD, current research is focusing on identifying epige-

netic modifications that are markers of developmental

abnormalities with a view to reducing the risk of later disease

by chemical (e.g. nutrient supplementation) or lifestyle (diet

or exercise) interventions.
6. Transgenerational epigenetic inheritance
and obesity

The situation in DOHaD of an environmental exposure (e.g.

high-fat diet) during pregnancy influencing offspring pheno-

type can be considered a transgenerational effect; however, the

offspring phenotypes cannot truly be considered ‘inherited’ as

the offspring (filial 1, or F1 generation) actually directly experi-

enced the high-fat diet themselves while in utero. In fact, as the

cells within the F1 animal that will go on to produce the F2

generation (the germ cells) have already been specified by

mid-gestation; therefore the grandchildren (F2) of the pregnant

animal (F0) can also be considered to have directly experienced

the diet/toxin. When a male experiences an environmental

exposure, he (the F0) and the next generation (F1) in the form

of his germ cells will also have directly been exposed [124,125].

As mentioned in §2, extensive epigenetic reprogramming

occurs between generations to prevent epigenetic modifi-

cations that are associated with a disease state from being

inherited. In spite of these processes, evidence is emerging

that epigenetic determinants of disease are inherited. To be

sure that a phenotype seen in successive generations is due

to the resistance of an epigenetic mark to reprogramming

rather than caused by the direct exposure of both generations,

effects need to be seen in the F3 generation of a pregnant

female or F2 generation down the male line [125]. These strin-

gent criteria for transgenerational effects being truly due to

epigenetic inheritance have limited the number of documen-

ted cases in mammals [126–129]. However, research in

the field of under and overnutrition is starting to generate

some of the most compelling evidence for transgenerational

epigenetic inheritance in mammals [124,130,131].

Down the female line, one study found that glucose metab-

olism was altered in F3 rats when the pregnant (F0) females
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were fed with a protein-restricted diet [132]. Down the male

lineage, reproductive [133] and glucose homeostasis abnormal-

ities [134,135] have been detected in the F2 generation, and

body-size changes in the F3 of F0 obese male mice. Postnatal

overfeeding of F0 mice also was found to cause changes to F2

glucose homeostasis through the male line [136]. Finally, an

allele that causes reduced food intake in mice also caused

reduced feeding in two subsequent generations that did not

inherit the mutation, only down the male line [137]. In some

of the above studies [133,135], the same phenotypes were

inherited down the male and female lines. This is surprising

considering the large differences between male and female

gametogenesis [138]. Continued efforts in characterizing

epigenetic molecules in the gametes may explain this.

The transgenerational transmission of effects caused

by ancestral obesity are likely to involve regions of DNA

methylation or histone modifications that are resistant to

reprogramming, or the inheritance of RNA. The germ line

and preimplantation reprogramming events provide multiple

challenges for the transmission of an epigenetic mark between

generations. However, there are increasing numbers of reports

of sequences that avoid one or both reprogramming events. In

the last few years, it has also been shown that some histones

survive protamination during late spermatogenesis [139–

141]. These histone-bound regions are common in genes that

are active in early development, which supports the theory

that the histones ‘prime’ the genes for transcription in the

next generation. An alteration to this process may be able to

transmit diseases down the male line. Alternatively, abnormal

deposits of RNA in sperm could facilitate disease inheritance,

in a mechanism similar to those discovered by Rassoulzade-

gan and co-workers (reviewed in [129]). Experimental testing

of these hypotheses is underway in several laboratories

around the world.

Despite the less extreme reprogramming in the female

germ line compared with the male—there is no protamination

or great reduction of RNA—paradoxically, less is known about

maternal inheritance of these molecules. This is because

genome-wide analyses such as chromatin immunoprecipita-

tion require millions of cells, and are thus feasible on sperm,

and also because it is hard to separate offspring phenotypes

that are caused by oocyte epigenetic molecules from gesta-

tional interactions between the foetus and the mother.

Therefore, further research into epigenetic inheritance down

the female line awaits technological improvements and

technically challenging embryo transfer strategies.

The best-characterized, inherited epigenetic modification

is DNA methylation. Certain classes of retrotransposons

retain DNA methylation through both reprogramming

events [23,29]. Subtelomeric regions also are resistant to at

least germ-cell demethylation [23], and single copy loci

have been found that resist one or both events [23,142]. There-

fore, DNA methylation at one of these regions or a nearby

gene could maintain a disease state between generations.
Alternatively, transgenerational epigenetic mechanisms

could involve a modulation of the gene network that under-

goes genomic imprinting [134]. These genes have a long history

in obesity research as many of them regulate adipogenesis,

appetite and metabolism and there are numerous examples of

their abnormal expression causing obesity [143]. Changes to

DNA methylation at loci that regulate imprinting (differentially

methylated regions, DMRs) can also be altered by gestational or

postnatal diet [89,144]. Furthermore, superovulation of mice or

the treatment of pregnant mice with endocrine disrupting

chemicals can induce small methylation defects at DMRs that

appear to survive transgenerational reprogramming down the

male line [145–147]. These studies could therefore explain

transgenerational effects caused by ancestral nutritional state.

Three cautionary notes for this theory are that the imprint

defects caused by endocrine disruptors and superovulation

were rarely found in tissues other than sperm. That argues

against their being a source of systemic gene dysregulation.

Also in the male-line transmitted effects of a protein restricted

diet no imprint defects in sperm were detected [122]. Third, a

recent study found that imprinted genes were not more likely

than non-imprinted genes to have altered expression in an inter-

generational model of developmental programming [148].

The potential for epigenetic mechanisms explaining ‘miss-

ing heritability’, i.e. when genetic inheritance cannot fully

account for the inherited component of disease, or in provid-

ing new mechanisms of evolutionary adaptation have made

it an area of much current interest and debate. Human epide-

miological studies of metabolic disease and animal models of

abnormal nutrition will be at the forefront of determining

the feasibility and impact of these mechanisms in the

coming decade.
7. Conclusions
Work performed with the ultimate aim of reducing the fre-

quency of obesity, or its associated health problems, has

uncovered new examples of environmental modulation of

epigenetic state. Work in the field has also started to reveal

how epigenetic alterations in early-life and even in previous

generations can influence the risk of an individual becoming

obese. It will be interesting to see whether the same genes, tis-

sues and epigenetic modifications are responsible for early-

life, transgenerational and adult-lifestyle-induced obesity or

whether several different molecular mechanisms feed into

the same phenotypes. A future evaluation of the importance

of epigenetics compared with other determinants of obesity

[2] would also help to reveal the relative potential of

epigenetic therapies.

We thank Enda Byrne and Lucia Daxinger for helpful comments in
the preparation of this manuscript. Also, we wish to apologize to
the authors that we did not have space to cite.
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